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We propose a network characterization of combinatorial fitness landscapes by adapting the notion of inher-
ent networks proposed for energy surfaces. We use the well-known family of NK landscapes as an example. In
our case the inherent network is the graph whose vertices represent the local maxima in the landscape, and the
edges account for the transition probabilities between their corresponding basins of attraction. We exhaustively
extracted such networks on representative NK landscape instances, and performed a statistical characterization
of their properties. We found that most of these network properties are related to the search difficulty on the
underlying NK landscapes with varying values of K.
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I. INTRODUCTION

Difficult combinatorial landscapes are found in many im-
portant problems in physics, computing, and in common ev-
eryday life activities such as resource allocation and sched-
uling. For example, spin-glass systems give rise to such
energy landscapes which are characterized by many local
minima and high energy barriers between them. These land-
scapes generally show frustration, i.e., frozen disorder where
the system is unable to relax into a state in which all con-
straints are satisfied. In completely different fields, such as
combinatorial optimization, similar hard problems also arise,
for example, the well-known traveling salesman problem and
many others.

In order to understand the reasons that make these prob-
lems difficult to optimize, a number of model landscapes
have been proposed. One of the simplest yet representative
examples is Kauffman’s family of NK landscapes �1�. The
NK family of landscapes is a problem-independent model for
constructing multimodal landscapes that can gradually be
tuned from smooth to rugged, where the term “rugged” is
intuitively related to the degree of variability in the objective
function value in neighboring positions in configuration
space. The more rugged the landscape, the higher the number
of local optima, and the landscape becomes correspondingly
more difficult to search for the global optimum. The idea of
an NK landscape is to have N “spins” or “genes,” each with
two possible values, 0 or 1. The fitness function of a NK
landscape is a real stochastic function � : �0,1�N→ �0,1� de-
fined on binary strings with N bits. A “gene” with fixed
epistasis level is represented by a fitness component

�i : �0,1�K+1→ �0,1� associated to each bit i. Its value de-
pends on the allele at bit i and also on the alleles at the K
other epistatic positions. �K must fall between 0 and N−1.�
The fitness ��s� of s� �0,1�N is the average of the values of
the N fitness components �i,

��s� =
1

N
�
i=1

N

�i�si,si1
, . . . ,siK

� ,

where �i1 , . . . , iK�� �1, . . . , i−1, i+1, . . . ,N�.
By increasing the value of K from 0 to N−1, NK land-

scapes can be tuned from smooth to rugged. For K=0 all
contributions can be optimized independently which makes
� a simple additive function with a single maximum. At the
other extreme when K=N−1 the landscape becomes com-
pletely random, the probability of any given configuration of
being the optimum is 1 / �N+1�, and the expected number of
local optima is 2N / �N+1�. Intermediate values of K interpo-
late between these two cases and have a variable degree of
“epistasis,” i.e., of spin �or gene� interaction �1�.

The K variables that form the context of the fitness con-
tribution of gene si can be chosen according to different
models. The two most widely studied models are the random
neighborhood model, where the K variables are chosen ran-
domly according to a uniform distribution among the N−1
variables other than si, and the adjacent neighborhood model,
in which the K variables are those closest to si in a total
ordering s1 ,s2 , . . . ,sN �using periodic boundaries�. No sig-
nificant differences between the two models were found in
terms of global properties of the respective families of land-
scapes, such as mean number of local optima or autocorre-
lation length �1,2�. Similarly, our preliminary studies on the
characteristics of the NK landscape optima networks did not
show noticeable differences between the two neighborhood
models. Therefore, we conducted our full study on the more
general random model.
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The NK model is related to spin glasses, and more pre-
cisely to p-spin models �3,4�, where p plays a role similar to
K. In spin glasses the function analogous to � is the energy
H and the stable states are the minima of the energy hyper-
surface.

In this study we seek to provide fundamental new insights
into the structural organization of the local optima in combi-
natorial landscapes, particularly into the connectivity of their
basins of attraction. Combinatorial landscapes can be seen as
a graph whose vertices are the possible configurations. If two
configurations can be transformed into each other by a suit-
able operator move, then we can trace an edge between them.
The resulting graph, with an indication of the fitness at each
vertex, is a representation of the given problem fitness land-
scape. A useful simplification of the graphs for the energy
landscapes of atomic clusters was introduced in �5,6�. The
idea consists in taking as vertices of the graph not all the
possible configurations, but only those that correspond to
energy minima. For atomic clusters these are well known, at
least for relatively small assemblages. Two minima are con-
sidered connected, and thus an edge is traced between them,
if the energy barrier separating them is sufficiently low. In
this case there is a transition state, meaning that the system
can jump from one minimum to the other by thermal fluc-
tuations going through a saddle point in the energy hypersur-
face. The values of these activation energies are mostly
known experimentally or can be determined by simulation.
In this way, a network can be built which is called the “in-
herent structure” or “inherent network” in �5,7�.

We propose a network characterization of combinatorial
fitness landscapes by adapting the notion of inherent net-
works described above. We use the family of NK landscapes
as an example. In our case the inherent network is the graph
where the vertices are all the local maxima and the edges
account for transition probabilities between maxima. We ex-
haustively extract such networks on representative small NK
landscape instances, and perform a statistical characteriza-
tion of their properties. Our analysis is inspired, in particular,
by the studies on energy landscapes �5,6�, and in general, by
the field of complex networks �8�. A related work can be
found in �9�, where the case of lattice polymer chains is
studied. However, the notion of an edge there is very differ-
ent, being related to moves that bring a given conformation
into an allowed neighboring one. Similar ideas have been put
forward in physical chemistry to understand the thermody-
namics and kinetics of complex biomolecules through the
network study of their free-energy landscapes �10�. It should
also be noted that our approach is different from the barrier-
tree representations of landscapes proposed by Stadler et al.
�see, for example, �11��.

The next section describes how combinatorial landscapes
are mapped onto networks, and includes the relevant defini-
tions and algorithms used in our study. The empirical analy-
sis of our selected NK landscape instances is presented in the
following two sections; one devoted to the study of the net-
work statistical features �Sec. III�, and the other to the study
of basins �Sec. IV�. Finally Sec. V presents our conclusions
and ideas for future work.

II. LANDSCAPES AS NETWORKS

To model a physical energy landscape as a network, Doye
�5� needed to decide first on a definition both of a state of the
system and how two states were connected. The states and
their connections will then provide the nodes and edges of
the network. For systems with continuous degrees of free-
dom, this was achieved through the “inherent structure”
mapping. In this mapping each point in configuration space
is associated with the minimum �or “inherent structure”�
reached by following a steepest-descent path from that point.
This mapping divides configurations into basins of attraction
surrounding each minimum on the energy landscape.

Our goal is to adapt this idea to the context of combina-
torial optimization. In our case, the vertexes of the graph can
be straightforwardly defined as the local maxima of the land-
scape. These maxima are obtained exhaustively by running a
best-improvement local search algorithm �see Fig. 1� from
every configuration of the search space. The definition of the
edges, however, is a much more delicate matter. In our initial
attempt �12� we considered that two maxima i and j were
connected �with an undirected and unweighed edge�, if there
exists at least one pair of direct neighbors solutions si and sj,
one in each basin of attraction �bi and bj�. We found empiri-
cally on small instances of NK landscapes, that such defini-
tion produced densely connected graphs, with very low ��2�
average path length between nodes for all K. Therefore, apart
from the already known increase in the number of optima
with increasing K, no other network property accounted for
the increase in search difficulty. Furthermore, a single pair of
neighbors between adjacent basins, may not realistically ac-
count for actual basin transitions occurring when using com-
mon heuristic search algorithms. These considerations, moti-
vated us to search for alternative definitions of the edges
connecting local optima. In particular, we decided to associ-
ate weights to the edges that account for the transition prob-
abilities between the nodes �local optima�. More details on
the relevant algorithms and formal definitions are given be-
low.

Relevant definitions and algorithms. A fitness landscape
�11� is a triplet �S ,V , f� where S is a set of potential solu-
tions, i.e., a search space, V :S→2S, a neighborhood struc-
ture, is a function that assigns to every s�S a set of neigh-
bors V�s�, and f :S→R is a fitness function that can be
pictured as the height of the corresponding solutions. In our
study, the search space is composed by binary strings of
length N, therefore its size is 2N. The neighborhood is de-
fined by the minimum possible move on a binary search

Choose initial solution s ∈ S

repeat

choose s
′

∈ V (s) such that f(s
′

) = maxx∈V (s) f(x)

if f(s) < f(s
′

) then

s← s
′

end if

until s is a Local optimum

FIG. 1. HillClimbing algorithm.
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space, that is, the 1-move or bit-flip operation. In conse-
quence, for any given string s of length N, the neighborhood
size is �V�s��=N. The HillClimbing algorithm to determine
the local optima and therefore define the basins of attraction,
is given in Fig. 1. It defines a mapping from the search space
S to the set of locally optimal solutions S*.

The basin of attraction of a local optimum i�S is the set
bi= �s�S �HillClimbing�s�= i�. The size of the basin of at-
traction of a local optimum i is the cardinality of bi. Notice
that for non-neutral fitness landscapes, as are standard NK
landscapes, the basins of attraction as defined above, produce
a partition of the configuration space S. Therefore, S
=�i�S*bi and ∀i�S∀ j� i, bi�bj =�.

We can now define the edge of a weight that connects two
feasible solutions in the fitness landscape. For each pair of
solutions s and s�, p�s→s�� is the probability to pass from s
to s� with the given neighborhood structure. In the case of
binary strings of size N, and the neighborhood defined by the
single bit-flip operation, there are N neighbors for each so-
lution, therefore,

if s� � V�s�, p�s → s�� =
1

N

and

if s� � V�s�, p�s → s�� = 0.

The probability to pass from a solution s�S to a solution
belonging to the basin bj, is defined as

p�s → bj� = �
s��bj

p�s → s�� .

Notice that p�s→bj��1.
Thus, the total probability of going from basin bi to basin

bj is the average over all s�bi of the transition probabilities
to solutions s��bj,

p�bi → bj� =
1

N�bi�
�
s�bi

p�s → bj� ,

N�bi� is the size of the basin bi.
Now we can define a local optima network G= �S* ,E� as

being the graph where the nodes are the local optima, and
there is an edge eij �E with weight wij = p�bi→bj� between
two nodes i and j if p�bi→bj��0. Notice that since each
maximum has its associated basin, G also describes the in-
terconnection of basins.

According to our definition of edge weights, wij = p�bi
→bj� may be different than wji= p�bj→bi�. Thus, two
weights are needed in general, and we have an oriented tran-
sition graph.

Finally, the following two definitions are relevant to the
discussion of the boundary of basins. The boundary B�b� of a
basin of attraction b can be defined as the set of configura-
tions within a basin that have at least one neighbor’s solution
in another basin b�. Conversely, the interior I�b� of a basin is
composed by the configurations that have all their neighbors
in the same basin. Formally,

B�b� = �s � b� ∃ b� � b, ∃ s� � b�, ∃ ess� � E� ,

I�b� = b − B�b� .

III. GENERAL NETWORK STATISTICS

In order to avoid sampling problems that could bias the
results, we used the largest values of N that can still be
analyzed exhaustively with reasonable computational re-
sources. We thus extracted the local optima networks of
landscape instances with N=14,16,18, and K
=2,4 ,6 , . . . ,N−2,N−1. For each pair of N and K values, 30
randomly generated instances were explored. The instances
were constructed in the following way: For a given spin i,
first K�N spins are chosen uniformly at random among the
remaining N−1 spins. Then the fitness contribution �i of
each spin �see Sec. I� is randomly drawn to be a real value
between 0 and 1; finally the function ��s� for this particular
landscape instance is computed. The networks statistics re-
ported below represent the average behavior of 30 indepen-
dent instances.

We now briefly describe the statistical measures used for
our analysis of maxima networks.

The standard clustering coefficient �8� does not consider
weighted edges. We thus use the weighted clustering mea-
sure proposed by �14�, which combines the topological in-
formation with the weight distribution of the network,

cw�i� =
1

si�ki − 1��j,h
wij + wih

2
aijajhahi,

where si=� j�iwij, anm=1 if wnm�0, anm=0 if wnm=0 and
ki=� j�iaij.

For each triple formed in the neighborhood of the vertex i,
cw�i� counts the weight of the two participating edges of the
vertex i. Cw is defined as the weighted clustering coefficient
averaged over all vertices of the network.

The standard topological characterization of networks is
obtained by the analysis of the probability distribution p�k�
that a randomly chosen vertex has degree k. For our
weighted networks, a characterization of weights is obtained
by the connectivity and weight distributions pin�w� and
pout�w� that any given edge has incoming or outgoing weight
w.

In our study, for each node i, the sum of outgoing edge
weights is equal to 1 as they represent transition probabili-
ties. So, an important measure is the weight wii of self-
connecting edges �remaining in the same node�. We have the
relation wii+si=1. The vertex strength, si, is defined as si
=� j�V�i�−�i�wij, where the sum is over the set V�i�− �i� of
neighbors of i �14�. The strength of a node is a generalization
of the node’s connectivity giving information about the num-
ber and importance of the edges.

Another network measure we report here is disparity �14�
Y2�i�, which measures how heterogeneous are the contribu-
tions of the edges of node i to the total weight �strength�,

Y2�i� = �
j�i

	wij

si

2

.
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The disparity could be averaged over the nodes with the
same degree k. If all weights are nearby of si /k, the disparity
for nodes of degree k is nearby 1 /k.

Finally, in order to compute the average shortest path be-
tween two nodes on the optima network of a given land-
scape, we considered the expected number of bit-flip muta-
tions to pass from one basin to the other. This expected
number can be computed by considering the inverse of the
transition probabilities between basins. In other words, if we
attach to the edges the inverse of the transition probabilities,
this value would represent the average number of random
mutations to pass from one basin to the other. More formally,
the distance �expected number of bit-flip mutations� between
two nodes is defined by dij =1 /wij where wij = p�bi→bj�.
Now, we can define the length of a path between two nodes
as being the sum of these distances along the edges that
connect the respective basins.

Detailed study of network features.We study in more
depth some network features which can be related to stochas-

tic local search difficulty on the underlying fitness land-
scapes. Table I reports the average �over 30 independent in-
stances for each N and K� of the network properties
described. n̄v and n̄e are, respectively, the mean number of
vertices and the mean number of edges of the graph for a
given K rounded to the next integer. C̄w is the mean weighted
clustering coefficient. Ȳ is the mean disparity, and d̄ is the
mean path length.

(1) Clustering coefficients. The fourth column of Table I
lists the average values of the weighted clustering coeffi-
cients for all N and K. It is apparent that the clustering co-
efficients decrease regularly with increasing K for all N. For
the standard unweighed clustering, this would mean that the
larger K is the less likely that two maxima which are con-
nected to a third one are themselves connected. Taking
weights, i.e., transition probabilities into account this means
that either there are less transitions between neighboring ba-
sins for high K, and/or the transitions are less likely to occur.
This confirms from a network point of view the common

TABLE I. NK landscapes network properties. Values are averages over 30 random instances, standard
deviations are shown as subscripts. nv and ne represent the number of vertexes and edges �rounded to the next

integer�, C̄w, the mean weighted clustering coefficient. Ȳ represents the mean disparity coefficient, d̄ is the
mean path length �see text for definitions�.

K n̄v n̄e C̄w Ȳ d̄

N=14

2 146 200131 0.980.0153 0.3670.0934 76194

4 7010 3163766 0.920.0139 0.1480.0101 896

6 18415 123271238 0.790.0149 0.0930.0031 1193

8 35022 258281801 0.660.0153 0.0700.0020 1332

10 58522 416861488 0.540.0091 0.0580.0010 1391

12 89622 574201012 0.460.0048 0.0520.0006 1401

13 108520 65287955 0.420.0045 0.0500.0006 1391

N=16

2 3315 516358 0.960.0245 0.3260.0579 5614

4 17833 91292930 0.920.0171 0.1370.0111 1268

6 46029 417914690 0.790.0154 0.0840.0028 1703

8 89033 933844394 0.650.0102 0.0620.0011 1942

10 1,47034 1621394592 0.530.0070 0.0500.0006 2061

12 2,25432 2279122670 0.440.0031 0.0430.0003 2071

14 3,26429 2907322056 0.380.0022 0.0400.0003 2031

15 3,86833 3212032061 0.350.0022 0.0390.0004 2001

N=18

2 5025 15791854 0.950.0291 0.3070.0630 7315

4 33072 262667056 0.920.0137 0.1270.0081 1749

6 99473 14644118685 0.780.0155 0.0760.0044 2375

8 2,09370 35400918722 0.640.0097 0.0560.0012 2732

10 3,61961 62052120318 0.520.0071 0.0440.0007 2921

12 5,65759 89974214011 0.430.0037 0.0380.0003 2971

14 8,35260 116364011935 0.360.0023 0.0340.0002 2931

16 11,79763 14068706622 0.320.0012 0.0320.0001 2831

17 13,79577 15247304818 0.300.0009 0.0320.0001 2771
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knowledge that search difficulty increases with K.
(2) Shortest path to the global optimum. The average

shortest path lengths d̄ are listed in the sixth column of Table
I. Figure 2 �top� is a graphical illustration of the average
shortest path length between optima for all the studied NK
landscapes. Notice that the shortest path increases with N,
this is to be expected since the number of optima increases
exponentially with N. More interestingly, for a given N the
shortest path increases with K, up to K=10, and then it stag-
nates and even decreases slightly for N=18. This is consis-
tent with the well-known fact that the search difficulty in NK
landscapes increases with K. However, some paths are more
relevant from the point of view of a stochastic local search
algorithm following a trajectory over the maxima network.
In order to better illustrate the relationship of this network
property with the search difficulty by heuristic local search
algorithms, Fig. 2 �bottom� shows the shortest path length to
the global optimum from all the other optima in the land-
scape. The trend is clear, the path lengths to the optimum
increase steadily with increasing K.

(3) Outgoing weight distribution. Here we report on the
outgoing weight distributions pout�w� of the maxima network
edges. Figure 3 shows the empirical cumulative probability
distribution functions for the cases N=16 and N=18 as log-
log plots. The case N=14 is similar but is not reported here
because it is much more noisy for K=2 and 4 due to the
small size of the graphs in these cases �see Table I�. One can
see that the weights, i.e., the transition probabilities to neigh-

boring basins are small. The distributions are far from uni-
form or Poissonian. They are not close to power laws either
for in this case they should appear as straight lines on the
plot at least before the degree cutoff. We could not find a
simple fit to the curves such as stretched exponentials or
exponentially truncated power laws. However, it is apparent
that for both N=16 and N=18, the low K have longer tails.
For high K the decay is faster. This seems to indicate that, on
average, the transition probabilities are higher for low K.

We have already remarked that the approach taken in
�5,6,9� is different in that edges between two optima either
exist or not; in other words the notion of transition probabil-
ity is absent. However, it is worth recalling that Doye et al.
�5,6� found that their inherent networks were of the scale-
free type with the global minimum being often the most
connected node. The landscape is thus essentially a “funnel”
meaning that the system can relax to the global minimum
from almost any other local minimum. In our language, we
would say that this kind of landscape is an “easy” one to
search. In contrast, the inherent networks found by Scala et
al. �9� for lattice polymer chains are of the small-world type
but they show a fast-decaying degree distribution function.

(4) Disparity. Figure 4 depicts the disparity coefficient as
defined in the preceding section for N=16,18. An interesting
observation is that the disparity �i.e., inhomogeneity� in the
weights of a node’s out-coming links tends to decrease
steadily with increasing K. This reflects that for high K the
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FIG. 2. Average with standard deviation of the distance �shortest
path� between nodes �top�, and of the path length to the optimum
from all the other basins �bottom�.
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FIG. 3. Cumulative probability distribution of the network
weights wij for outgoing edges with j� i in log-log scale, for N
=16 �top� and N=18 �bottom�. Averages of 30 instances for each N
and K are reported.

COMPLEX-NETWORK ANALYSIS OF COMBINATORIAL… PHYSICAL REVIEW E 78, 066114 �2008�

066114-5



transitions to other basins tend to become equally likely,
which is another indication that the landscape, and thus its
representative maxima network, becomes more random and
difficult to search.

When K increases, the number of edges increases and the
number of edges with a weight over a certain threshold in-
creases too �see Fig. 3�. Therefore, for small K, each node is
connected with a small number of nodes each with a relative
high weight. On the other hand, for large K, the weights
become more homogeneous in the neighborhood, that is, for
each node, all the neighboring basins are at similar distance.

If we make the hypothesis that edges with higher weights
are likely to be connected to nodes with larger basins �an
intuition that we need to confirm in future work� then, as the
larger basins tend to have higher fitness �see Fig. 12�, the
path to higher fitness values would be easier to find for lower
K than for larger K.

(5) Boundary of basins. Figure 5 shows the averages, over
all the nodes in the network, of the weights wii �i.e., the
probabilities of remaining in the same basin after a bit-flip
mutation�. Notice that the weights wii are much higher when
compared to those wij with j� i �see Fig. 3�. In particular, for
K=2,50% of the random bit-flip mutations will produce a
solution within the same basin of attraction. These average
probabilities of remaining within the same basin, are above
12% for the higher values of K. Notice that the averages are
nearly the same regardless of the value of N, but decrease
with the epistatic parameter K.

The exploration of new basins with the random bit-flip
mutation seems to be, therefore, easier for large K than for
low K. But, as the number of basins increases, and the fitness
correlation between neighboring solutions decreases with in-
creasing K, it becomes harder to find the global maxima for
large K. This result suggests that the dynamic of stochastic
local search algorithms on NK landscapes with large K is
different from that with lower values of K, with the former
engaging in more random exploration of basins.

Figure 6 gives the average, with standard deviations, of
number of configurations in the interior of basins �this statis-
tic is computed on 30 independent landscapes�. Notice that
the size of the basins’ interior is below 1% �except for N
=14, K=2�. Surprisingly, the size of the basins’ boundaries is
nearly the same as the size of the basins themselves. There-
fore, the probability of having a neighboring solution in the
same basin is high, but nearly all the solutions have a neigh-
bor solution in another basin. Thus, the interior basins seem
to be “hollow,” a picture which is far from the smooth stan-
dard representation of landscapes in two dimensions �2D�
with real variables where the basins of attraction are visual-
ized as real mountains.

(6) Incoming weights distribution. It is also of interest to
study the distribution of the weights of edges impinging into
a given node pin�w�. However, a plot of this quantity is not
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FIG. 4. Average disparity, Y2, of nodes with a given degree K,
for N=16 �top� and N=18 �bottom�. Average of 30 independent
instances for each N and K are reported. The curve 1 /k is also
reported to compare to a random case.
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very informative. We prefer to show in Fig. 7 the average
values over 30 independent landscapes for each value of N
and for the whole interval of K.

The general trend for all values of N is that the average
weight of the incoming transitions into a node quickly de-
creases with increasing K. This means that it is more difficult
to make a transition to a given local maximum or to reach a
randomly chosen one when K is large. This agrees with the
fact that the basins’ size is a rapidly decreasing function of K
�see Fig. 9�. In fact, there is a strong positive correlation
between the basins’ size and the weights of the transitions
into the corresponding maximum, i.e., as the basin becomes

larger, the number of transitions into it increases too. This is
shown on the scatter plots �Fig. 8�. The correlation follows
approximately a power law, the regression lines are also vi-
sualized. The correlation coefficient for all plots is high
�above 0.97�. If we hypothesize that the incoming weights
are proportional to the size of the basin, i.e., that edges be-
tween nodes are randomly distributed over the search space,
the sum of the incoming weights for a basin bi should be
N�bi�

2N N�S*�. This theoretical line is visualized on the scatter
plots �Fig. 8�. Notice that the difference between the theoret-
ical and regression lines, is higher for low values of K. For
large K, the weights are given almost only by the size of
basins. This is not the case for small K values, where the
fitness correlation between neighboring solutions is high �2�.
This explains why the hypothesis does not hold in this case.
So, the incoming weights could be deduced from the size of
basins and the fitness of solutions belonging to the basin.

IV. EMPIRICAL ANALYSIS OF BASINS

Besides the maxima network, it is useful to describe the
associated basins of attraction as these play a key role in
search algorithms. Furthermore, some characteristics of the
basins can be related to the optima network features. The
notion of the basin of attraction of a local maximum has been
presented before. We have exhaustively computed the size
and number of all the basins of attraction for N=16 and N
=18 and for all even K values plus K=N−1. In this section,
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we analyze the basins of attraction from several points of
view as described below.

A. Global optimum basin size versus K

In Fig. 9 we plot the average size of the basin correspond-
ing to the global maximum for N=16 and N=18, and all
values of K studied. The trend is clear: The basin shrinks
very quickly with increasing K. This confirms that the higher
the K value, the more difficult for a stochastic search algo-
rithm to locate the basin of attraction of the global optimum.

B. Number of basins of a given size

Figure 10 shows the cumulative distribution of the num-
ber of basins of a given size �with regression line� for repre-
sentative instances with N=18, K=4. Figure 11 illustrates the
average �of 30 independent landscapes� correlation coeffi-
cients �bottom plot� and linear regression coefficients �top

plot� �intercept ��̄� and slope ��̄�� between the number of
nodes and the basin sizes for instances with N=18 and for all
the studied values of K. Notice that distribution decays ex-
ponentially or faster for the lower K and it is closer to expo-

nential for the higher K. This observation is relevant to the-
oretical studies that estimate the size of attraction basins �see,
for example, �13��. These studies often assume that the basin
sizes are uniformly distributed, which is not the case for the
NK landscapes studied here.

From the slopes of the regression lines �Fig. 11� one can
see that high values of K give rise to steeper distributions.
This indicates that there are less basins of large size for large
values of K. In consequence, basins are broader for low val-
ues of K, which is consistent with the fact that those land-
scapes are smoother.

C. Fitness of local optima versus their basin sizes

The scatter plots in Fig. 12 illustrate the correlation be-
tween the basin sizes of local maxima �in logarithmic scale�
and their fitness values. Two representative instances for N
=18 and K=4, 8 are shown. Notice that there is a clear
positive correlation between the fitness values of maxima
and their basins’ sizes. In other words, the higher the peak
the wider tend to be its basin of attraction. Therefore, on
average, with a stochastic local search algorithm, the global
optimum would be easier to find than any other local opti-
mum. This may seem surprising. But, we must keep in mind
that as the number of local optima increases �with increasing
K�, the global optimum basin is more difficult to reach by a
stochastic local search algorithm �see Fig. 9�. This observa-
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tion offers a mental picture of NK landscapes: We can con-
sider the landscape as composed of a large number of moun-
tains �each corresponding to a basin of attraction�, and those
mountains are wider the taller the hilltops. Moreover, the size
of a mountain basin grows exponentially with its height.

V. CONCLUSIONS

We have proposed a new characterization of combinato-
rial fitness landscapes using the well-known family of NK
landscapes as an example. We have used an extension of the
concept of inherent networks proposed for energy surfaces
�5� in order to abstract and simplify the landscape descrip-
tion. In our case the inherent network is the graph where the
nodes are all the local maxima and the edges account for
transition probabilities �using the 1-flip operator� between
the local maxima basins of attraction. This mapping leads to
oriented weighted graphs, instead of the more commonly
used unordered and unweighed ones �5�.

Our characterization of landscapes as networks accounts
for the interbasins transitions which are in a normalized form
in the �directed� interbasin edges. Although our approximate
weighting approach does not take actual fitness differences
between local optima into account, we believe that our de-
scription is relevant to the dynamics of stochastic local
search algorithms in combinatorial landscapes. First, transi-
tions to neighboring basins are at the core of any stochastic

local search algorithm, therefore, a detailed characterization
of them is relevant to the algorithm’s analysis. Second, at
least on the studied landscapes, we found a positive correla-
tion between the size of basins and their fitness. However,
the trajectory followed by a search heuristic such as simu-
lated annealing, which requires knowledge of fitness differ-
ences between pairs of configurations �15� would not be rep-
resented accurately in this view.

We have exhaustively obtained these graphs for N
= �14,16,18�, and for all even values of K, plus K=N−1,
and conducted a network analysis on them. The network rep-
resentation of the NK fitness landscapes has proved useful in
characterizing the topological features of the landscapes and
gives important information on the structure of their basins
of attraction. In fact, our guiding motivation has been to
relate the statistical properties of these networks, to the
search difficulty of the underlying combinatorial landscapes
when using stochastic local search algorithms �based on the
bit-flip operator� to optimize them. We have found clear in-
dications of such relationships.

The clustering coefficients suggest that, for high values of
K, the transition between a given pair of neighboring basins
is less likely to occur.

The shortest paths to the global optimum become longer
with increasing N, and for a given N, they clearly increase
with higher K.

The outgoing weight distribution indicates that, on aver-
age, the transition probabilities from a given node to neigh-
bor nodes are higher for low K.

The incoming weight distribution indicates that, on aver-
age, the transition probabilities from the neighborhood of a
node become lower with increasing K.

The disparity coefficients reflect that for high K the tran-
sitions to other basins tend to become equally likely, which is
an indication of the randomness of the landscape.

The previous results clearly confirm and justify from a
network point of view the empirically known fact that NK
landscapes become harder to search as they become more
and more random with increasing K.

The construction of the maxima networks requires the de-
termination of the basins of attraction of the corresponding
landscapes. We have thus also described the nature of the
basins, and found that the size of the basin corresponding to
the global maximum becomes smaller with increasing K. The
distribution of the basin sizes is approximately exponential
for all N and K, but the basin sizes are larger for low K,
another indirect indication of the increasing randomness and
difficulty of the landscapes when K becomes large. Further-
more, there is a strong positive correlation between the basin
size and the degree of the corresponding maximum, which
confirms that the synthetic view provided by the maxima
graph is useful. Finally, we found that the size of the basins
boundaries is roughly the same as the size of the basins
themselves. Therefore, nearly all the configurations in a
given basin have a neighbor solution in another basin. This
observation suggests a different landscape picture than the
smooth standard representation of 2D landscapes where the
basins of attraction are visualized as real mountains. Some of
these results on basins in NK landscapes were previously
unknown �1�.
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their corresponding basin sizes, for two representative instances
with N=18, K=4 �top� and K=8 �bottom�.

COMPLEX-NETWORK ANALYSIS OF COMBINATORIAL… PHYSICAL REVIEW E 78, 066114 �2008�

066114-9



This study represents our first attempt towards a topologi-
cal and statistical characterization of easy and hard combina-
torial landscapes, from the point of view of complex-network
analysis. Much remains to be done. First, the results found
should be confirmed for larger instances of NK landscapes.
This will require good sampling techniques, or theoretical
studies since exhaustive sampling becomes quickly imprac-
tical. Other landscape types should also be examined, such as
those containing neutrality, which are very common in real-

world applications, and especially the landscapes generated
by important hard combinatorial problems such as the trav-
eling salesman problem and other resource allocation prob-
lems. Work is in progress for neutral versions of NK land-
scapes and for knapsack problems. Finally, the landscape
statistical characterization is only a step towards implement-
ing good methods for searching it. We thus hope that our
results will help in designing or estimating efficient search
techniques and operators.
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